The Crystal and Molecular Structure of
 Cyclotetra[μ-oxo-chloro- π-cyclopentadienyltitanium(IV)]

By A.C. Skapski and P.G.H.Troughton
Chemical Crystallography Laboratory, Imperial College, London S. W.7, England

(Received 13 May 1969)

Abstract

The crystal and molecular structure of cyclotetra[μ-oxo-chloro- π-cyclopentadienyltitanium(IV)], $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}\right]_{4}$, has been determined from three-dimensional X-ray diffractometer data. The compound crystallizes in the orthorhombic space group $\mathrm{Cmc} 2_{1}$ with four tetramers in a unit cell of dimensions $a=15 \cdot 320, b=11 \cdot 715, c=14 \cdot 515 \AA$. The structure was refined by least-squares methods using 1347 independent reflexions to give $R=0.042$. The molecules consist of tetrameric rings with the titanium atoms tetrahedrally coordinated. The eight-membered $-\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}-$ ring is far from planar, and the arrangement of the chlorine atoms and the cyclopentadienyl rings is such that they are alternately above and below the ring. Of the four cyclopentadienyl rings, two are ordered and two are systematically disordered; thus the tetramers have only approximate C_{δ} symmetry. The $\mathrm{Ti}-\mathrm{Cl}$ distances vary from $2 \cdot 263-2.270 \AA$, the $\mathrm{Ti}-\mathrm{O}$ distances from 1.776-1.799 \AA, and the $\mathrm{Ti}-\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distances (taken to the centres of the rings) from 2.02-2.04 \AA.

Introduction

There has been much interest in polymers formed with Ti-O-Ti chains (Spirer, 1962). Polymers of quite low molecular weight ($\simeq 1700$) which have good heat resistant properties can be obtained by hydrolysis of titanium alkoxides. Here the titanium has sixfold coordination and the organic groups are bonded to titanium through oxygen. However in compounds in which titanium is directly bonded to organic carbon, the coordination is fourfold and it has been suggested (Saunders \& Spirer, 1965) that such compounds might more readily form polymers of a linear structure and higher molecular weight.

During investigations into polymer formation by organo-titanium compounds, a compound of formula $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}\right]_{n}$ was first prepared by Gorsich (1960) who reported $n \geq 3$. He was unable to determine the value of n by cryoscopic or ebullioscopic molecularweight determinations because of the compound's limited solubility in organic solvents. Subsequently Saunders \& Spirer (1965) examined its molecular weight by light scattering. They determined the molecular weight as $630 ; 658$ is required for a value of $n=4$. They also reported some preliminary X-ray work on the crystals which were found to be orthorhombic of space group Cmcm with unit-cell dimensions $a=15 \cdot 28, b=11 \cdot 69$, $c=14.50 \AA$: the density indicated that there were 16 of the structural units $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}$ in the cell. On the of basis of this evidence Saunders \& Spirer postulated a tetrameric ring structure (i.e. $n=4$) with a tetrahedral arrangement at the titanium atom together with the symmetry required for the Cmcm space group.

An X-ray structural study of this compound was undertaken to characterize it unequivocally and to determine its detailed conformation. It has been found that the compound is a tetrameric ring with $n=4$ and
the titanium tetrahedrally coordinated, but the space group is $C m c 2_{1}$ and not Cmcm so that the conformation of the molecule differs from that envisaged by Saunders \& Spirer. A preliminary account of this work has already been published (Skapski, Troughton \& Sutherland, 1968).

Experimental

Cyclotetra[μ-oxo-chloro- π-cyclopentadienyltitanium(IV)] is obtained when $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{3}$ in methanol solution is hydrolysed by water; it crystallizes from xylene as yellow plates. Suitable crystals were kindly provided by Dr L. Spirer. Preliminary oscillation and Weissenberg photographs confirmed the earlier report that the crystals were orthorhombic with systematic absences given by $h k l: h+k=2 n+1$ and $h 0 l: l=2 n+1$. These absences are consistent with the space groups $C m c 2_{1}$ (No.36), $C 2 \mathrm{~cm}$ (No.40), or Cmcm (No.63).

The initial intensity data, on which the structure was solved, were collected using the equi-inclination Weissenberg technique and measured visually by Dr H.H. Sutherland of the University of Hull. Layers $h, 0-8, l$ and correlating layers $h, k, 0-2$, taken with $\mathrm{Cu} K \alpha$ radiation, gave a total of 1279 independent reflexions, of which 348 were unobserved.

The intensity data, on which the final structure and its atomic parameters are based, were measured on a Siemens off-line automatic four-circle diffractometer. A crystal of approximate dimensions $0.65 \mathrm{~mm} \times 0.39$ $\mathrm{mm} \times 0.09 \mathrm{~mm}$ was mounted with the c axis parallel to the φ axis of the diffractometer. $\mathrm{Cu} K \alpha$ radiation at a take-off angle of $4 \cdot 5^{\circ}$, a $\mathrm{Ni} \beta$ filter and a $\mathrm{Na}(\mathrm{Tl}) \mathrm{I}$ scintillation counter were used. The $\theta-2 \theta$ scan technique was employed, with a 'five-point' measuring procedure (one side of the peak, background, full peak, background on the other side of the peak, other side of the peak). The diffractometer automatically selects
measuring times up to a preset maximum or attenuators (nickel) if appropriate so as to achieve similar counting statistics for all but the weakest reflexions. 1347 independent reflexions to $\theta=70^{\circ}$ were measured, of which 17 were judged insignificant as the net count was below 2.58 times the standard deviation (i.e. below the 99% confidence limit) and were assigned a count equal to this value. The 800 reflexion was used as a reference every 20 reflexions: the net count of this reflexion did not alter noticeably over the period of data collection (approximately 2 days). The data were scaled using the reference reflexion and Lorentz-polarization and absorption corrections were applied. As the crystal was quite large and anisotropic in shape and the linear absorption coefficient was also large [$\mu(\mathrm{Cu} K \alpha)=144 \cdot 6 \mathrm{~cm}^{-1}$], it was considered necessary to apply an absorption correction. This was done by means of the Gaussian integration method, with an $8 \times 8 \times 8$ grid, described by Busing \& Levy (1957) with crystal path-lengths determined by the vector analysis procedure of Coppens, Leiserowitz \& Rabinovich (1965).

The unit-cell dimensions and their estimated probable errors, measured on the Siemens diffractometer $\left(\mathrm{Cu} K \alpha_{1}=1 \cdot 54051 \AA\right)$ are $a=15 \cdot 320 \pm 0 \cdot 005, b=11 \cdot 715$ ± 0.005 and $c=14.515 \pm 0.005 \AA$ at $20^{\circ} \mathrm{C}: U=2605 \cdot 1$ $\bar{\AA}^{3} ; D_{\text {obs }}=1.66(\pm 0.02){\mathrm{g} . \mathrm{cm}^{-3}}$ (Saunders \& Spirer, 1965); $D_{\text {calc }}=1.676 \mathrm{~g} . \mathrm{cm}^{-3}$ for 16 of the structural units $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}, F(000)=1312$, M.W. $=657 \cdot 6$.

Solution and refinement of the structure

The initial solution of this structure presented some problems. The titanium and chlorine atoms have comparable scattering power for X-rays and, as there were sixteen of each in the unit cell, a quite complicated Patterson map was expected and indeed found. The Patterson synthesis showed that the molecules lie mainly in the $x y$ plane and that they must be based on the $z=0$ or $z=\frac{1}{4}$ levels if the structure belonged either to the $C m \mathrm{~cm}$ or C 2 cm space groups; the origin in z is arbitrary for the $C m c 2_{1}$ space group. Only one independent vector of approximately $2 \cdot 3 \AA$ could be found, to correspond with an expected $\mathrm{Ti}-\mathrm{Cl}$ distance, although this appeared to be a multiple peak. All the other strongest peaks were greater than $3.5 \AA$ from the origin and were attributed to $\mathrm{Ti}-\mathrm{Ti}$ and non-bonded $\mathrm{Ti}-\mathrm{Cl}$ vectors, but no immediate solution for the arrangement of the titanium and chlorine atoms was apparent. A sharpened Patterson synthesis, although changing the relative intensities of the peaks, did not produce any significant new peaks.

Also at this stage it was not possible to eliminate any of the three possible space groups with certainty. The evidence indicating whether the structure was centrosymmetric or non-centrosymmetric was conflicting: Saunders \& Spirer (1965) had found that the crystals showed neither piezoelectric properties nor optical activity, which led them to state that the space group
was Cmcm ; reflexion statistics gave $\langle | E\rangle=0.921$ while a perfect centrosymmetric structure requires $\langle | E\rangle=$ 0.798 and a perfect non-centrosymmetric structure requires $\langle | E\rangle=0 \cdot 886$. This latter evidence implied that the structure was non-centrosymmetric with some inherent disorder, which later proved to be the case. Additionally, attempts to fit the postulated ring structure into the known unit cell suggested that the space group Cmcm imposed too many symmetry requirements to allow such a molecule to be accommodated. It was therefore decided to pursue a solution in the non-centrosymmetric space groups.

A number of trial solutions were tested, often with only some of the titanium and chlorine atoms included. Finally a 'solution' was found in $C 2 \mathrm{~cm}$, based on two out of the three possible independent titanium atoms and one of the two possible independent oxygen atoms (bonded by the two titanium atoms), which reached a conventional R value ($=\Sigma| | F_{o}\left|-\left|F_{c}\right| /\left|/ F_{o}\right|\right.$) of 0.378 , after refinement. Hitherto no solution had given an R value better than $0 \cdot 45$. The titanium atoms were in positions ($x y \frac{1}{4}$), lying on a mirror plane. The Fourier synthesis showed two peaks approximately $1 \AA$ above and below this mirror, both of which were in a reasonable position for a titanium atom to complete a $-\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}-$ eight-membered ring. This suggested that either the ring was disordered across this mirror or, more likely, the true space group was $C m c 2_{1}$, which does not require such a mirror. Refinement of all the titanium and oxygen atoms in $\mathrm{Cmc} 2_{1}$ reduced R to 0.33 . The chlorine atoms were easily found from the resultant Fourier synthesis, and further refinement including the chlorine atoms took R to $0 \cdot 25$. (This arrangement of titanium and chlorine atoms fully explained the Patterson map, and it was apparent that the overlap and coincidences of many independent vectors had obscured its solution.) One of the cyclopentadienyl rings was located from the next Fourier synthesis, and further refinement including this gave $R=0 \cdot 20$. It was obvious from a difference Fourier synthesis at $R=0 \cdot 20$ that the other two cyclopentadienyl rings were disordered. Describing these rings with half-atoms in the best positions obtainable from the difference Fourier synthesis gave $R=0.136$ after further refinement. Another difference synthesis omitting the disordered rings did not suggest any more satisfactory way of describing them. More refinement, with the titanium and chlorine atoms anisotropic, reduced R to 0.133 .

The final structure obtained from the visual data was unsatisfactory on two counts: (1) the standard deviations of the Ti-O-Ti angles were too large for it to be certain that the Ti-O-Ti bonds were non-linear; (2) the final difference Fourier synthesis without the disordered rings was of insufficient resolution for the disorder to be properly described. As the crystals were large and of excellent quantity and a diffractometer had become available since the structure determination was originally undertaken, it was decided to recollect the data on the diffractometer.

Refinement of the titanium and chlorine atoms cally on the diffractometer data gave an R value of anisotropically and the oxygen atoms and the carbon atoms of the ordered cyclopentadienyl ring isotropi－
$0 \cdot 122$ ．It was apparent from a difference Fourier syn－ thesis that the remaining two cyclopentadienyl rings

Table 1．Observed and calculated structure factors（in electrons $\times 10$ ）for $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}\right]_{4}$ ＊Indicates an unobserved reflexion．E indicates an extinction reflexion．

：

 －ロッロッチun

Table 1 (cont.)

12	${ }^{16 ; i j ;}$	14	1	184	${ }^{318}$	12	308	304	;	$\text { 38; } 3 ; 6$	77\%
				10	18		23,0.6		!	914	218
-	${ }^{13} 9$	433	4	382	17	1	${ }^{64}$	${ }^{64}$	1	311	
	178	380		14,96			*9	804	8	301	29
3	96	17%	:	1749 1358	1738	3	180		?	138	318
4	188	\% 6	4	938	98.8	5	139	818	?	01	$7{ }^{10}$
?	148	120	:	${ }_{60} 8$	${ }_{69} 6$;	${ }^{185}$	104	!	378	296
;	196	10.	10	-00	649		15)	89			
!	796	350	12	110	-24	${ }^{6}$	318	308	,	${ }^{15,9 \%}$	
10	9	201		12.2.4		11	${ }^{4}$	${ }^{6}$,	170	203
11	182	243	1	104					?	313	208
	10.10 .6		2	132	112	,	139	${ }^{06}$,	275	20.4
?	, 3	${ }^{73}$	3	198	${ }^{34}$	$\frac{1}{2}$	${ }_{2}^{131}$	148	;	9940	104 248
?	339	2398	3	97	348	3	191	269	,	149	173
	19\%	104	;	307	280	4	${ }^{131}$	213	-	221	294
:	19	${ }^{4} 4$?	(64\%	${ }^{102}$	S	${ }^{124}$	${ }_{172}$			
?	Vi	337	!	304	367	;	210	192	;	3595	989
:	9\%	120	${ }^{10}$	1428	190	!	${ }_{148}^{107}$	2129	;	? ${ }^{\circ \prime \%}$	3928
		168	12	193	12				3	996	386
	1'920,		${ }^{3}$	4	94		13,464		4	338	340
1	${ }_{362}$	278		12.4it		1	297	${ }^{2018}$:	114 749	${ }_{263}$
			*	47	30	2	318	${ }^{313}$			
	18.196	124	$\frac{1}{2}$	${ }_{39} 9$	331	?	${ }_{392}^{361}$	388	,	16.0; ${ }^{2}$	
1	$8{ }^{60}$	43	3	49	373	3	182		?	384	278
3	39\%	230.	${ }^{4}$	-1920	731	6	361	390	:	48,	1738
4	Ha	3\%"	\%	944	¢190		24, 302		,	174	*
,	321	${ }^{206}$?	3		-		438			
;		${ }_{262}$!	209 9	204 89	4	308 3	431	c	14,93\%	498
;	18	314	1	198	223	-	340	347	;	${ }^{7 \prime}$	298
	309	212	12		(183	:	10\%	${ }_{263}$?	385	${ }_{313}$
${ }_{11}$	13,	${ }^{423}$	12	136	286	10	167	268	3	38 408 089	${ }_{889}$
12	164	10:	u	12.96i	199	-	24.2.4	30	:	30\%	310,
14	$1{ }^{1}$	136	2	940	936	1	357	334	,	194	144
			2	212	186	2	373	338	-	226	29
,	${ }^{13} \cdot 3 ;{ }^{2}$	316	4	'908	${ }_{3}$		357	${ }^{364}$		16.416	
'	336	216	,	4	270	,	19	206	;	237	104
?	$4{ }^{4} 2$	3029	;		3\% ${ }^{10}$;	${ }^{18} 9$	${ }_{24}^{48}$;	${ }_{71} 18$	210
4	Ta,	332	*	96	334	8	2%	209	3	361	399
-	$1{ }^{14}$	35	-	4.4	349	-	:09	${ }^{105}$	¢	${ }^{213}$	190
;	3%	284,	\because	${ }_{14} 13$	319	18	$1{ }^{13} 1$	${ }^{180}$:	33.3	300 189
-	?n	313	1			11	17		,	25.	231
:	\cdots			12.0\%	90		14,4:4				
:	194	172	1	193	190	1	$1 \cdot 4$	109	'	174	119
${ }^{1}$	397	238	?	97	${ }^{36}$?	135	104	;	181	178
11	>94	21	3	423	414	3	${ }^{64}$	818			
	18.9.6		;	-4,	395	3		235	:		$9{ }^{3}$
,	159	3%	,	197	349	8	14	28	,	339	3>
,	ckn	332	,	190	164	,	313	218		17,1.6	
-	Ps	291	-	cis	230	-	-1	${ }^{63}$,	336	,
-	"Fs.	$3{ }^{3}$				10	>:	209	;	'1\%'	175
\%	194	8.	,	12.176	408		14,0.L			19	${ }^{14} 9$
?	'919	194	$\frac{1}{2}$	$\therefore:$	-34	?	198	${ }_{180}^{180}$:	108	191 83
1.	\%:	22^{31}	3	175		$\frac{3}{3}$	${ }^{213}{ }^{\text {ja }}$	219	,	189\%	162 43
1	5	31	s	100	130	4	163				
1	>9	$2{ }^{2}$				\%	? 12	319		${ }^{17} 13.3{ }^{2}$	10 A
	11.7 .		*	13.194	192		112	112		${ }_{6} 9$, 3
	; 79	237	1	31,4	49		193	194	?	17%	179
'	193	9,97	?	271	29\%	*	197	134	!	${ }^{14}{ }^{14}$	(127
,	[31	333	4	10\%	298		14.0.1		S	107	98
-	, 41	17	5	49	458	0	113	301	*	1:\%	108
:	Sis	998	;	4.4	${ }^{417}$	$\frac{1}{2}$	$6{ }^{6} 9$	248			
;	314	211	9	i4	522		186	13	-	17394	237
2	$8{ }^{8}$	18	\bullet	308	122	\%	115	${ }^{93}$,	${ }^{46}$	45
	,	139		?52	291	6	9	92	3	50	,s
11	1.7	137	12	9	121						
	11.9.4			13.3.4			${ }^{15} 110$	102	r	${ }^{12.0936}$	306
	289	24.2			204		153	${ }^{306}$?	${ }_{3}^{403} 4$	3506
;	${ }_{34}$	235	$\frac{1}{2}$	38.	320	$\frac{2}{3}$		3		354	335
,	343	$2{ }^{26}$	3	361	39	*	67	53		11.2.2	
;	P20	235 139	$\stackrel{4}{3}$	378	337	5	463	494 498	'	${ }^{62}$	195
?	111	${ }_{2} 18$?	215	- 298	\%	234 4	[148	?	123	2112
:	\$1964	${ }^{45}$?	${ }^{468}$	44	8	251	215	3	137	230
			¢	270	239	10	194	200			
。	12.14,4	23	12	126 62							

were disordered systematically to give two separate orientations of each ring rather than being completely disordered. Further refinement including the disordered rings reduced R to 0.064 . Refinement with the ordered cyclopentadienyl ring, also anisotropic, took R to 0.055 . The hydrogen atoms for this ring were then included, fixed in their calculated positions, and further refinement with the oxygen atoms anisotropic gave $R=0.050$. All atoms were now allowed to refine anisotropically, with fixed hydrogen atoms for all cyclopentadienyl rings added, to give $R=0 \cdot 047$; for this and all subsequent work, it was necessary to transfer from full-matrix to block-diagonal refinement because of the number of parameters. This refinement was followed by the application of a dispersion correction: with the sign of $\Delta f^{\prime \prime}$ one way, the R value increased after refinement to 0.056 ; with the sign of $\Delta f^{\prime \prime}$ reversed, the
R value decreased after refinement to $0 \cdot 046$. Further refinement with the dispersion correction the right way, and the 220 reflexion removed because of extinction, gave a final R value of 0.042 . The final average ratio of shift to standard deviation was 0.06 , and the maximum ratio was 0.36 .

In the refinement, the usual least-squares function, $\sum \omega\left(F_{o}-F_{c}\right)^{2}$, was minimized. The atomic scattering factors used were those tabulated by Cromer \& Waber (1965), and the values for the real and imaginary parts of the dispersion correction were those given by Cromer (1965). The anomalous dispersion was treated as follows: for each reflexion a structure factor was calculated without and with the dispersion correction, and the observed structure factor was multiplied by the ratio of these two; refinement was then carried out using the 'corrected' structure factor. The unobserved reflexions were included throughout the refinement of the structure on the diffractometer data but were omitted from all estimates of the agreement factor R. Because of the approximately constant counting statistics in the measurement of the data, unit weight was given to each reflexion in the refinement: an analysis of the final distribution of $\omega \Delta^{2}$ did not suggest any more appropriate weighting scheme. A final difference Fourier synthesis showed no peak greater than $0.35 \mathrm{e} . \AA^{-3}$, and the highest peaks were in the neighbourhood of the disordered cyclopentadienyl rings.

Table 1 gives a list of the final observed and calculated structure factors. Tables 2 and 3 give the final atomic parameters and their standard deviations: these standard deviations have been estimated from blockdiagonal matrix refinement and are, therefore, a slight underestimate of the true deviations. Tables 4 and 5 give the most significant bond lengths and angles respectively, with their standard deviations: these standard deviations are estimated using the diagonal approximation, but no further significant error is introduced by this as there are no strong parameter correlations.

Table 2. Position parameters
Numbers in parentheses here and in subsequent Tables are estimated standard deviations.

	\boldsymbol{x}	y	z
Ti(1)	0	-0.00767 (28)	0
$\mathrm{Ti}(2)$	0	$0 \cdot 39775$ (17)	$0 \cdot 06632$ (15)
$\mathrm{Ti}(3)$	0•16052 (9)	$0 \cdot 20633$ (11)	-0.01755 (13)
$\mathrm{Cl}(1)$	0	-0.12298 (31)	-0.12506 (24)
$\mathrm{Cl}(2)$	0	$0 \cdot 54153$ (27)	-0.03853 (23)
$\mathrm{Cl}(3)$	$0 \cdot 25088$ (21)	$0 \cdot 16560$ (32)	$0 \cdot 10141$ (13)
$\mathrm{O}(1)$	$0 \cdot 09205$ (40)	$0 \cdot 08240$ (51)	-0.02012 (54)
$\mathrm{O}(2)$	$0 \cdot 09185$ (53)	$0 \cdot 31310$ (60)	$0 \cdot 03034$ (54)
C(11)*	0.0299 (10)	$0 \cdot 5405$ (11)	$0 \cdot 1804$ (9)
C(12)	0.0857 (14)	0.4420 (14)	$0 \cdot 1970$ (10)
C(13)	$0 \cdot 0285$ (9)	$0 \cdot 3551$ (13)	$0 \cdot 2216$ (10)
C(14)	-0.0604 (12)	$0 \cdot 3809$ (12)	$0 \cdot 2131$ (12)
C(15)	-0.0632 (16)	$0 \cdot 4925$ (16)	$0 \cdot 1903$ (12)
C(21)	0.0380 (13)	-0.0072 (18)	$0 \cdot 1571$ (12)
C(22)	0.0928 (18)	-0.0906 (16)	$0 \cdot 1190$ (14)
C(23)	0.0329 (10)	-0.1740 (13)	$0 \cdot 0855$ (10)

Table 2 (cont.)

	x	y	z
$\mathrm{C}(24)$	$-0.0620(16)$	$-0.1410(22)$	$0.1085(13)$
$\mathrm{C}(25)$	$-0.0565(20)$	$-0.0358(20)$	$0.1497(16)$
$\mathrm{C}(31)$	$0.2621(7)$	$0.3199(11)$	$-0.1015(10)$
$\mathrm{C}(32)$	$0.1801(9)$	$0.3349(9)$	$-0.1407(8)$
$\mathrm{C}(33)$	$0.1487(8)$	$0.2316(10)$	$-0.1763(6)$
$\mathrm{C}(34)$	$0.2152(9)$	$0.1513(11)$	$-0.1633(7)$
$\mathrm{C}(35)$	$0.2860(7)$	$0.2064(13)$	$-0.1167(8)$
$\mathrm{H}(11) \dagger$	0.0479	0.6254	0.1641
$\mathrm{H}(12)$	0.1563	0.4381	0.1935
$\mathrm{H}(13)$	0.0500	0.2706	0.2410
$\mathrm{H}(14)$	-0.1126	0.3233	0.2260
$\mathrm{H}(15)$	-0.1219	0.5389	0.1801
$\mathrm{H}(21)$	0.0599	0.0678	0.1905
$\mathrm{H}(22)$	0.1627	-0.0927	0.1136
$\mathrm{H}(23)$	0.0505	-0.2535	0.0491
$\mathrm{H}(24)$	-0.1159	-0.1942	0.0898
$\mathrm{H}(25)$	-0.1145	-0.0120	0.1697
$\mathrm{H}(31)$	0.3007	0.3835	-0.0679
$\mathrm{H}(32)$	0.1450	0.4146	-0.1430
$\mathrm{H}(33)$	0.0857	0.2166	-0.2082
$\mathrm{H}(34)$	0.2123	0.0637	-0.1851
$\mathrm{H}(35)$	0.3461	0.1654	-0.0980

* Carbon atoms are numbered $C(m n)$ where m is the ring number and n is the atom number in the ring. Atoms are numbered successively around the ring.
\dagger Hydrogen atoms bear the same numbers as the carbon atoms to which they are bonded. These are calculated positions, and therefore no standard deviations are given.

There is of course the possibility that the structure is entirely ordered, i.e. monoclinic with $\beta=90^{\circ}$, space group $C c$, and that the apparent disorder of the cyclopentadienyl rings arises by imposing a mirror plane in orthorhombic symmetry. To test this possibility the data were assumed to be either of type $h k l$ or $\bar{h} k l$, and the different possible models obtained by reducing the symmetry were refined. No model gave an R value bet-
ter than 0.060 , and even then the 'temperature factors' were quite unacceptable.

The solution and refinement of the structure were carried out using the Crystal Structure Calculations

Table 4. Selected bond lengths

$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.263 (4) \AA
$\mathrm{Ti}(1)-\mathrm{O}(1)$	1.785 (6)
$\mathrm{Ti}(1)-\mathrm{C}(21)$	$2 \cdot 35$ (2)
$\mathrm{Ti}(1)$ - $\mathrm{C}(22)$	$2 \cdot 44$ (2)
Ti 1) - $\mathrm{C}(23)$	$2 \cdot 37$ (2)
$\mathrm{Ti}(1)-\mathrm{C}(24)$	$2 \cdot 41$ (2)
$\mathrm{Ti}(1)-\mathrm{C}(25)$	$2 \cdot 36$ (2)
$\mathrm{Ti}(1)-\mathrm{C}(\mathrm{p} 2)^{*}$	2.04
$\mathrm{Ti}(2)-\mathrm{Cl}(2)$	$2 \cdot 270$ (4)
$\mathrm{Ti}(2)-\mathrm{O}(2)$	1.799 (8)
$\mathrm{Ti}(2)-\mathrm{C}(11)$	$2 \cdot 40$ (1)
$\mathrm{Ti}(2)-\mathrm{C}(12)$	$2 \cdot 36$ (2)
$\mathrm{Ti}(2)-\mathrm{C}(13)$	$2 \cdot 35$ (1)
$\mathrm{Ti}(2)-\mathrm{C}(14)$	$2 \cdot 33$ (2)
$\mathrm{Ti}(2)-\mathrm{C}(15)$	2.33 (2)
$\mathrm{Ti}(2)-\mathrm{C}(\mathrm{p} 1)^{*}$	2.02
$\mathrm{Ti}(3)-\mathrm{Cl}(3)$	2.264 (4)
$\mathrm{Ti}(3)-\mathrm{O}(1)$	1.792 (6)
$\mathrm{Ti}(3)-\mathrm{O}(2)$	1.776 (8)
$\mathrm{Ti}(3)-\mathrm{C}(31)$	$2 \cdot 382$ (13)
$\mathrm{Ti}(3)-\mathrm{C}(32)$	2.357 (11)
$\mathrm{Ti}(3)-\mathrm{C}(33)$	2.330 (9)
$\mathrm{Ti}(3)-\mathrm{C}(34)$	2.365 (11)
$\mathrm{Ti}(3)-\mathrm{C}(35)$	2.402 (11)
$\mathrm{Ti}(3)-\mathrm{C}(\mathrm{p} 3)^{*}$	2.044
C--CCmean (ring 1)	$1 \cdot 43$ (3)
$\mathrm{C}-\mathrm{C}_{\text {mean }}$ (ring 2)	$1 \cdot 44$ (3)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.391 (17)
C(32)-C(33)	$1 \cdot 401$ (16)
C(33)-C(34)	1.399 (18)
C(34)-C(35)	1.433 (18)
C(35)-C(31)	1.396 (20)

* $\mathrm{Cp}(1), \mathrm{Cp}(2), \mathrm{Cp}(3)$ are the respective centres of the three cyclopentadienyl rings $1,2,3$.

Table 3. Anisotropic thermal parameters
The anisotropic thermal ellipsoid is of the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Ti}(1)$	0.00333 (48)	0.00352 (41)	0.00177 (52)	0	0	0.00008 (28)
Ti(2)	0.00398 (16)	0.00333 (20)	0.00239 (14)		0	-0.00022 (15)
Ti(3)	0.00256 (9)	$0 \cdot 00426$ (14)	0.00305 (9)	-0.00005 (10)	-0.00006 (8)	0.00012 (12)
Cl(1)	0.00708 (34)	0.00651 (42)	0.00330 (24)	0	0	-0.00160 (26)
Cl(2)	0.00679 (32)	0.00522 (36)	0.00338 (24)	0	0	0.00132 (23)
$\mathrm{Cl}(3)$	$0 \cdot 00459$ (21)	0.01593 (56)	$0 \cdot 00686$ (24)	-0.00143 (29)	-0.00265 (23)	$0 \cdot 00421$ (32)
$\mathrm{O}(1)$	0.0044 (5)	0.0077 (8)	$0 \cdot 0052$ (5)	-0.0020 (5)	-0.0005 (5)	-0.0005 (6)
$\mathrm{O}(2)$	0.0074 (7)	0.0064 (8)	$0 \cdot 0062$ (6)	0.0032 (6)	0.0011 (6)	-0.0000 (5)
C(11)	0.0057 (17)	0.0027 (14)	$0 \cdot 0012$ (9)	$0 \cdot 0003$ (10)	-0.0012 (8)	-0.0015 (9)
C(12)	0.0074 (20)	0.0044 (19)	0.0019 (10)	-0.0020 (16)	-0.0015 (12)	0.0013 (12)
C(13)	0.0024 (12)	0.0062 (21)	0.0020 (10)	-0.0005 (10)	0.0007 (10)	$0 \cdot 0030$ (16)
C(14)	0.0033 (13)	0.0138 (35)	0.0020 (15)	0.0002 (18)	-0.0007 (10)	$0 \cdot 0006$ (16)
C(15)	0.0111 (27)	0.0041 (21)	0.0024 (12)	$0 \cdot 0042$ (18)	0.0003 (15)	-0.0016 (12)
C(21)	0.0069 (20)	0.0087 (27)	0.0021 (11)	0.0012 (16)	$0 \cdot 0005$ (12)	-0.0010 (14)
C(22)	0.0104 (26)	0.0051 (22)	0.0037 (14)	-0.0004 (20)	-0.0011 (17)	$0 \cdot 0006$ (15)
C(23)	0.0050 (13)	0.0054 (18)	0.0017 (9)	$0 \cdot 0000$ (11)	-0.0010 (9)	$0 \cdot 0023$ (11)
C(24)	0.0085 (23)	0.0141 (39)	0.0028 (14)	-0.0028 (25)	$0 \cdot 0016$ (16)	$0 \cdot 0040$ (20)
C(25)	0.0127 (33)	0.0097 (31)	0.0043 (17)	0.0018 (30)	$0 \cdot 0007$ (20)	$0 \cdot 0029$ (20)
C(31)	0.0037 (8)	0.0129 (22)	0.0128 (16)	-0.0014 (11)	$0 \cdot 0006$ (10)	$0 \cdot 0073$ (16)
C(32)	$0 \cdot 0087$ (13)	0.0077 (13)	0.0043 (8)	0.0009 (11)	0.0012 (9)	0.0030 (9)
C(33)	0.0073 (11)	0.0122 (17)	$0 \cdot 0020$ (6)	-0.0003 (11)	$0 \cdot 0005$ (7)	0.0008 (9)
C(34)	0.0088 (13)	0.0109 (17)	$0 \cdot 0040$ (8)	$0 \cdot 0019$ (12)	0.0027 (9)	$0 \cdot 0004$ (10)
C(35)	$0 \cdot 0044$ (8)	$0 \cdot 0194$ (26)	0.0046 (9)	$0 \cdot 0004$ (12)	0.0016 (7)	$0 \cdot 0008$ (14)

Table 5. Selected bond angles

$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{O}(1)$	$102 \cdot 8(2)^{\circ}$
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}(\mathrm{p} 2)^{*}$	$115 \cdot 2$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{O}\left(1^{\prime}\right)$	$104 \cdot 4(6)$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{C}(\mathrm{p} 2)$	$115 \cdot 0$
$\mathrm{Cl}(2)-\mathrm{Ti}(2)-\mathrm{O}(2)$	$102 \cdot 4(3)$
$\mathrm{Cl}(2)-\mathrm{Ti}(2)-\mathrm{C}(\mathrm{p} 1)$	$117 \cdot 1$
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{O}\left(2^{\prime}\right)$	$102 \cdot 9(6)$
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{C}(\mathrm{p} 1)$	$115 \cdot 0$
$\mathrm{Cl}(3)-\mathrm{Ti}(3)-\mathrm{O}(1)$	$101 \cdot 7(3)$
$\mathrm{Cl}(3)-\mathrm{Ti}(3)-\mathrm{O}(2)$	$102 \cdot 3(3)$
$\mathrm{Cl}(3)--\mathrm{Ti}(3)-\mathrm{C}(\mathrm{p} 3)$	$116 \cdot 6$
$\mathrm{O}(1)-\mathrm{Ti}(3)-\mathrm{O}(2)$	$103 \cdot 4(3)$
$\mathrm{O}(1)-\mathrm{Ti}(3)-\mathrm{C}(\mathrm{p} 3)$	$115 \cdot 7$
$\mathrm{O}(2)-\mathrm{Ti}(3)-\mathrm{C}(\mathrm{p} 3)$	$115 \cdot 2$
$\mathrm{Ti}(1)-\mathrm{O}(1)-\mathrm{Ti}(3)$	$159 \cdot 7(4)$
$\mathrm{Ti}(2)-\mathrm{O}(2)-\mathrm{Ti}(3)$	$164 \cdot 8(5)$
$\left.\mathrm{C}(\mathrm{p} 1)^{\prime}\right)-\mathrm{Ti}(2)-\mathrm{C}\left(\mathrm{p} 1^{\prime \prime}\right)$	$3 \cdot 6$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{Ti}(1)-\mathrm{C}\left(\mathrm{p} 2^{\prime \prime}\right)$	$7 \cdot 8$
$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$	$107 \cdot 0(1 \cdot 1)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$110 \cdot 6(1 \cdot 1)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$106 \cdot 3(1 \cdot 1)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$108 \cdot 2(1 \cdot 1)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(31)$	$107 \cdot 7(1 \cdot 1)$

* $\mathrm{C}(\mathrm{p} 1)$ and $\mathrm{C}(\mathrm{p} 2)$ are the mean centres of the disordered cyclopentadienyl rings. $\mathrm{C}\left(\mathrm{p}^{\prime}\right), \mathrm{C}\left(\mathrm{p} 1^{\prime \prime}\right), \mathrm{C}\left(\mathrm{p} 2^{\prime}\right), \mathrm{C}\left(\mathrm{p}^{\prime \prime}\right)$ are the centres of each orientation of the disordered rings and $C(p 3)$ is the centre of the ordered ring.

System X-ray-63 (Stewart, 1965). The calculations were carried out either on the Imperial College IBM 7090 or on the London University Atlas machines.

Description and discussion of the structure

Fig. 1 (a) and (b) shows the conformation of the eightmembered -Ti-O-Ti- ring, which is far from planar. The arrangement of the four titanium atoms is such that the $\mathrm{Ti}(1)-\mathrm{Ti}(2)$ and $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ distances are nearly equal (4.846 and $4.918 \AA$), and the angle between the planes containing $\mathrm{Ti}(1), \mathrm{Ti}(2), \mathrm{Ti}(3)$ and $\mathrm{Ti}(1), \mathrm{Ti}(2)$, $\mathrm{Ti}(4)$ is $146 \cdot 2^{\circ}$, and similarly that between the planes $\mathrm{Ti}(3), \mathrm{Ti}(4), \mathrm{Ti}(1)$ and $\mathrm{Ti}(3), \mathrm{Ti}(4), \mathrm{Ti}(2)$ is $145 \cdot 7^{\circ}$. The $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ bonds are distorted from linearity such that the angle $\mathrm{Ti}(1)-\mathrm{O}(1)-\mathrm{Ti}(3)$ is $159.7(\sigma=0.4)^{\circ}$ and the angle $\mathrm{Ti}(2)-\mathrm{O}(2)-\mathrm{Ti}(3)$ is $164 \cdot 8(\sigma=0 \cdot 5)^{\circ}$. In the dimer $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}\right]_{2} \mathrm{O}$ (Allegra \& Ganis, 1962) the $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ bond is linear.

The arrangement of the chlorine atoms and the cyclopentadienyl rings is such that they are alternately above and below the 'plane' of the ring [Fig. 1(a)]. Of the four cyclopentadienyl rings two are ordered and two are disordered [Fig. 1(b)]. Thus, although the tetramers lie astride mirror planes in space group $\mathrm{Cmc} 2_{1}$ the individual molecules do not have strict C_{s} symmetry. The tetramers also possess approximate $\overline{4}\left(S_{4}\right)$ symmetry. The disordered cyclopentadienyl rings are not, in fact, completely disordered and each ring lies in two distinct orientations as indicated in Fig. 1(b). Although the description of these rings in the leastsquares refinement must be something of an approximation, it appears that the centre of each disordered ring lies distinctly to one side of the mirror plane,
implying that some of the other coordinating atoms are fractionally disordered as well, a fact which is supported by the distribution of the anisotropic temperature factors of all the chlorine atoms. Least-squares planes have been calculated through the ordered cyclopentadienyl ring, and through one orientation of each of the disordered rings. The maximum deviation of an atom from each ring is $0.019,0.020,0.036 \AA$ respectively: thus the disordered rings have not become unduly distorted compared with the ordered ring in the least-squares refinement.

The titanium atoms are tetrahedrally coordinated, assuming that the cyclopentadienyl rings are monodentate ligands. It can be seen from the tetrahedral angles given in Table 5 that there are distortions from the

(a)

(b)

Fig. 1. (a) [100] projection and (b) [001] projection of the structure of $\left[\left(\pi \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}\right]_{4}$.
ideal 109° in order to minimize the angular strain in the eight-membered ring and to accommodate the relatively bulky cyclopentadienyl ligands. The $\mathrm{Ti}-\mathrm{Cl}$ distances vary from 2.263-2.270 ($\sigma=0.004$) \AA, the Ti-O distances from 1.776-1.799 ($\sigma=0.007$) \AA, and the $\mathrm{Ti}-\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distances (taken to the centres of the rings) from $2 \cdot 02-2 \cdot 04 \AA$. These can best be compared with the distances found in the two structures $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{2}\right]_{2} \mathrm{O}$ (Allegra \& Ganis, 1962) and $\left.\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiCl}_{3}\right)$ (Ganis \& Allegra, 1962) which were determined from two-dimensional projections. They found $\mathrm{Ti}-\mathrm{Cl}$ distances varying from $2 \cdot 27-2 \cdot 30 \AA$, and $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Ti}-\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distances of 1.74 and $2.04 \AA$ respectively. Thus all the bond lengths in the different structures are similar. There are no unusual intermolecular contacts and therefore the crystal structure is determined only by the efficient packing of the molecules.

The tetrameric ring structure of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{TiClO}\right]_{4}$ is the first of its type containing a transition metal; the nearest equivalent is the cyclic $\mathrm{P}_{4} \mathrm{O}_{11}^{4-}$ ion found in the metaphosphates $\mathrm{Al}_{4}\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)_{3}$ (Pauling \& Sherman, 1957) and $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ (Romers, Ketelaar \& MacGillavry, 1951). Tetrameric alkoxides of titanium are known (Ibers, 1963; Witters \& Caughlan, 1965; Wright \& Williams, 1966), but in these the titanium atoms are octahedrally coordinated and the tetramer consists of four such octahedra joined by edges.

The authors wish to thank Dr H.H.Sutherland for the collection and measurement of the visual data, and Dr L.Spirer for providing the crystals. We are also
grateful to Professor D. Rogers for many helpful discussions and for the use of a Siemens diffractometer provided by the (British) Science Research Council.

One of us (P.G.H.T.) thanks the Science Research Council for a Research Studentship.

References

Allegra, G. \& Ganis, P. (1962). R.C. Accad. Lincei Rend. Classe Sci. fis. mat. nat. 33, 438.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Ganis, P. \& Allegra, G. (1962). R. C. Accad. Lincei Rend. Classe Sci. fis. mat. nat. 33, 303.
Gorsich, R. D. (1960). J. Amer. Chem. Soc. 82, 4211.
Ibers, J. A. (1963). Nature, Lond. 197, 686.
Pauling, L. \& Sherman, J. (1937). Z. Kristallogr. 96, 481.
Romers, C., Ketelaar, J. A. A. \& MacGillavry, C. H. (1951). Acta Cryst. 4, 114.

Saunders, L. \& Spirer, L. (1965). Polymer, 6, 635.
Skapski, A. C., Troughton, P. G. H. \& Sutherland, H. H. (1968). Chem. Comm. p. 1418.

Spirer, L. (1962). Studies of Some Organic Compounds of Titanium. Ph. D. Thesis, University of London and references contained therein.
Stewart, J. M. (1965). Crystal Structure Calculations System X-ray 63. Univ. of Maryland Technical Report TR-64-6.
Witters, R. W. \& Caughlan, C. N. (1965). Nature, Lond. 205, 1312.
Wright, D. A. \& Williams, D. A. (1966). Acta Cryst. A 21, 155.

The Crystal Structure of dl-4 β,10 β-Dimethyl-6-ethylamino-4-hydroxycarbonyl$2,3,5 \beta, 10$-tetrahydrophenanthr-1-one lactam, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}^{*}$

By Karin Bjåmer Birnbaum \dagger
Biochemistry Laboratory, National Research Council of Canada, Ottawa, Canada

(Received 28 April 1969)
The title compound crystalizes in the monoclinic space group $P 2_{1} / c$ with four molecules in a unit cell of dimensions $a=10.901, b=9.738, c=16.389 \AA ; \beta=117 \cdot 17^{\circ}$. The structure was determined by the symbolic-addition procedure using low-temperature diffractometer data and refined by the least-squares method to $R=3.9 \%$ for 3101 observed reflexions.

Introduction

Wiesner and Ho recently attempted to prepare the lactam (I) and intended to use it as an intermediate for a

[^0]synthesis of hexacyclic diterpene alkaloids. Although the material which they obtained gave the correct elemental analysis, its ultraviolet and nuclear magneticresonance spectra did not agree with the proposed structure. This crystal structure determination, which was undertaken in order to establish unambiguously the structure of the synthetic intermediate, revealed the

[^0]: * Issued as N.R.C.C. No. 11348.
 \dagger National Research Council Postdoctorate Fellow.

